肖发俊 1,2,*赵建林 1,2,**
作者单位
摘要
1 西北工业大学物理科学与技术学院,陕西 西安 710129
2 西北工业大学光场调控与信息感知工业和信息化部重点实验室,陕西 西安 710129
表面等离激元因其极强的束缚光场能力,成为亚波长尺度下研究光与物质相互作用的理想平台,也是构建未来小型化、低功耗、高便携光电子器件的核心单元。更多维度、更加精确和灵活地调控等离激元的模式性质对推动其基础和应用研究至关重要。近年来,光场调控技术的发展,拓展了人们利用光场的维度,也赋予光场更强大的操控等离激元模式的能力。本文简述了矢量光场与等离激元模式作用的基本理论与物理机制,回顾了近年来矢量光场调控等离激元模式激发、耦合和远场辐射的研究进展,并介绍了相关研究在增强光谱、纳米颗粒光捕获、纳米位移传感等方面的应用。
表面等离激元 矢量光场 模式耦合 单向散射 
光学学报
2023, 43(16): 1623002
Author Affiliations
Abstract
1 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
2 Key Laboratory of Spectral Imaging Technology of Chinese Academy of Sciences, Xi’an 710119, China
3 State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Centre of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
4 Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC 3800, Australia
5 e-mail: xuetaogan@nwpu.edu.cn
6 e-mail: fjxiao@nwpu.edu.cn
7 e-mail: jlzhao@nwpu.edu.cn
Plasmonic particle-on-film nanocavities, supporting gap modes with ultra-small volume, provide a great solution to boost light–matter interactions at the nanoscale. In this work, we report on the photoluminescence (PL) enhancement of monolayer MoS2 using high order modes of an Au nanosphere dimer-on-film nanocavity (DoFN). The high order plasmon modes, consisting of two bonding quadrupoles in the dimer and their images in the Au film, are revealed by combining the polarization-resolved scattering spectra with the numerical simulations. Further integrating the monolayer MoS2 into the DoFN, these high order modes are used to enhance PL intensity through simultaneously boosting the absorption and emission processes, producing a 1350-fold enhancement factor. It opens an avenue to enhance the light–matter interaction with high order plasmon modes and may find applications in future optoelectronics and nanophotonics devices.
Photonics Research
2021, 9(4): 04000501
Author Affiliations
Abstract
1 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710129, China
2 e-mail: fjxiao@nwpu.edu.cn
3 e-mail: xuetaogan@nwpu.edu.cn
4 Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
5 Advanced Computing and Simulation Laboratory (AXL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC 3800, Australia
6 e-mail: jlzhao@nwpu.edu.cn
We experimentally demonstrate a scheme to deterministically excite a three-dimensionally oriented electric dipole in a single Au nanosphere by using a tightly focused radially polarized beam whose focal field possesses polarization states along three-dimensional (3D) orientations owing to the spatial overlap between longitudinal and radial electric field components. Experiment observations indicate that the orientation of an excited dipole moment gradually changes from out-of-plane to in-plane when the nanosphere is moved away from the beam center, which is reconfirmed by full-wave simulations. Moreover, rigorous calculation based on Mie theory reveals that a reduced effective ambient permittivity accompanies the rotation of the dipole moment, leading to a blue-shifted and narrowed resonance peak. We envision that our results could find applications in detecting the 3D orientation of isolated molecules and benefit the fine manipulation of light–matter interactions at the single-molecule level.
Photonics Research
2019, 7(6): 06000693
Author Affiliations
Abstract
1 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710129, China
2 Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3 Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC 3800, Australia
4 e-mail: jlzhao@nwpu.edu.cn
We report a method to tune the second harmonic generation (SHG) frequency of a metallic octamer by employing cylindrical vector beams as the excitation. Our method exploits the ability to spatially match the polarization state of excitations with the fundamental target plasmonic modes, enabling flexible control of the SHG resonant frequency. It is found that SHG of the octamer is enhanced over a broad band (400 nm) by changing the excitation from the linearly polarized Gaussian beam to radially and azimuthally polarized beams. More strikingly, when subjected to an azimuthally polarized beam, the SHG intensity of the octamer becomes 30 times stronger than that for the linearly polarized beam even in the presence of Fano resonance.
Polarization Harmonic generation and mixing Plasmonics Singular optics 
Photonics Research
2018, 6(3): 03000157

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!